English | 简体中文 | 繁體中文 | 한국어 | 日本語
Tuesday, 26 March 2019, 04:00 HKT/SGT
Share:
    

Source: Science and Technology of Advanced Materials
Electronics at the nanoscale: challenges and opportunities for making metal nanowires
Molecular nanowires can be used for many applications, from LED lights to medical devices.

TSUKUBA, Japan, Mar 26, 2019 - (ACN Newswire) - Silver, gold and copper nanowires are leading contenders for next-generation nanoscale devices, however greater understanding of how they work and improved production methods are needed before they can be widely used, explains a recent review in the journal Science and Technology of Advanced Materials.

Electron microscopy shows gold atoms being gradually stretched from a rod in panels a-d into a chain in panels e-k. The black dots in panels e-k are single atoms. (Credit: Hideki Masuda/Wikimedia Commons)

"Metal nanowires are used for numerous applications, but our understanding of their mechanical properties remains elusive," says Nurul Akmal Che Lah, engineer at Universiti Malaysia Pahang.

Lah and colleague Sonia Trigueros at the University of Oxford reviewed methods for synthesising and analysing silver, gold and copper nanowires for molecular-based electronics.

Molecular electronics uses single molecules, or nanoscale collections of molecules, to create electronic components too small to be seen with the naked eye. For example, molecular wires are one-dimensional chains of single metal atoms which conduct electric current. Molecular electronic devices can be used for a wide range of applications from storage media to catalysts and clinical treatments.

Nanomaterials have different properties from their bulk counterparts. Coinage metals in particular -- silver, gold, copper and nickel -- have attracted special attention because of their unique physical properties.

Recent advances in experimental techniques have allowed scientists to probe the mechanical properties of nanowires. High precision micromechanical testing devices, such as electron microscopes, scanning force microscopes and X-ray diffraction, can be used to assess crystalline structure, stress-strain relationships, atom-by-atom chemical composition, as well as electronic properties. These methods have revealed that the nanomechanical properties of nanowires are influenced by nanowire structure, surface stress and defect formation.

The researchers investigated recent developments in the synthesis and analysis of metal nanowires. Hydro-solvothermal synthesis, in which metallic structures are grown within a solution, is a relatively simple and inexpensive process. Compared with other methods that require a template or high pressures, hydro-solvothermal synthesis is best suited to industrial application as it doesn't require complex post-processing treatments.

However, synthesis methods must be improved to control the initial size, final size and morphology of the nanowires and produce high yields, whilst also being inexpensive and environmentally friendly. More work needs to be done to further optimise and improve the mechanical properties of coinage nanowires in order to harness their full potential, the researchers conclude.

For further information, contact:
Nurul Akmal Che Lah
Innovative Manufacturing, Mechatronics and Sports Lab
Universiti Malaysia Pahang
Email: akmalcl@ump.edu.my

Paper link: https://www.tandfonline.com/doi/full/10.1080/14686996.2019.1585145

About Science and Technology of Advanced Materials Journal
Open access journal STAM publishes outstanding research articles across all aspects of materials science, including functional and structural materials, theoretical analyses, and properties of materials. STAM website: https://www.tandfonline.com/toc/tsta20/current

For more information about STAM, please contact:
Mikiko Tanifuji
STAM Publishing Director
Tanifuji.Mikiko@nims.go.jp

Press release distributed by ResearchSEA for Science and Technology of Advanced Materials.

Topic: Research and development
Source: Science and Technology of Advanced Materials

Sectors: Electronics, Science & Nanotech, Science & Research
https://www.acnnewswire.com
From the Asia Corporate News Network


Copyright © 2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.

 

Science and Technology of Advanced Materials Related News
Apr 17, 2024 22:00 HKT/SGT
A new spin on materials analysis
Apr 12, 2024 18:00 HKT/SGT
Kirigami hydrogels rise from cellulose film
Feb 27, 2024 08:00 HKT/SGT
Sensing structure without touching
Nov 21, 2023 07:00 HKT/SGT
Nano-sized probes reveal how cellular structure responds to pressure
Nov 17, 2023 10:00 HKT/SGT
Machine learning techniques improve X-ray materials analysis
More news >>
Copyright © 2024 ACN Newswire - Asia Corporate News Network
Home | About us | Services | Partners | Events | Login | Contact us | Cookies Policy | Privacy Policy | Disclaimer | Terms of Use | RSS
US: +1 214 890 4418 | China: +86 181 2376 3721 | Hong Kong: +852 8192 4922 | Singapore: +65 6549 7068 | Tokyo: +81 3 6859 8575