English | 简体中文 | 繁體中文 | 한국어 | 日本語
Friday, 28 February 2020, 16:00 HKT/SGT
Share:
    

Source: Science and Technology of Advanced Materials
Bringing the green revolution to electronics
From biomemory to implants, researchers are looking for ways to make more eco-friendly electronic components.

Tsukuba, Japan, Feb 28, 2020 - (ACN Newswire) - Researchers are investigating how to make electronic components from eco-friendly, biodegradable materials to help address a growing public health and environmental problem: around 50 million tonnes of electronic waste are produced every year.


Designing electronics components using more eco-friendly materials could help reduce the impacts of the 50 million tonnes of e-waste produced annually.


Less than 20% of the e-waste we produce is formally recycled. Much of the rest ends up in landfills, contaminating soil and groundwater, or is informally recycled, exposing workers to hazardous substances like mercury, lead and cadmium. Improper e-waste management also leads to a significant loss of scarce and valuable raw materials, like gold, platinum and cobalt. According to a UN report, there is 100 times more gold in a tonne of e-waste than in a tonne of gold ore.

While natural biomaterials are flexible, cheap and biocompatible, they do not conduct an electric current very well. Researchers are exploring combinations with other materials to form viable biocomposite electronics, explain Ye Zhou of China's Shenzhen University and colleagues in the journal Science and Technology of Advanced Materials.

The scientists expect that including biocomposite materials in the design of electronic devices could lead to vast cost saving, open the door for new types of electronics due to the unique material properties, and find applications in implantable electronics due to their biodegradability.

For example, there is widespread interest in developing organic field effect transistors (FET), which use an electric field to control the flow of electric current and could be used in sensors and flexible flat-panel displays.

Flash memory devices and biosensor components made with biocomposites are also being studied. For example, one FET biosensor incorporated a calmodulin-modified nanowire transistor. Calmodulin is an acidic protein that can bind to different molecules, so the biosensor could be used for detecting calcium ions.

Researchers are especially keen to find biocomposite materials that work well in resistive random access memory (RRAM) devices. These devices have non-volatile memory: they can continue to store data even after the power switch is turned off. Biocomposite materials are used for the insulating layer sandwiched between two conductive layers. Researchers have experimented with dispersing different types of nanoparticles and quantum dots within natural materials, such as silk, gelatin and chitosan, to improve electron transfer. An RRAM made with cetyltrimethylammonium-treated DNA embedded with silver nanoparticles has also shown excellent performance.

"We believe that functional devices made with these fascinating materials will become promising candidates for commercial applications in the near future with the development of materials science and advances in device manufacturing and optimization technology," the researchers conclude.

Further information
Ye Zhou
Shenzhen University
[email protected]

Paper
https://doi.org/10.1080/14686996.2020.1725395

About Science and Technology of Advanced Materials Journal
Open access journal STAM publishes outstanding research articles across all aspects of materials science, including functional and structural materials, theoretical analyses, and properties of materials.

Shunichi Hishita
STAM Publishing Director
[email protected]

Press release distributed by ResearchSEA for Science and Technology of Advanced Materials.

Topic: Press release summary
Sectors: Nanotechnology, Environment
http://www.acnnewswire.com
From the Asia Corporate News Network


Copyright © 2020 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.

 

Science and Technology of Advanced Materials Releated News
June 21, 2020 18:00 HKT/SGT
Let the robot swarms begin!
Feb 21, 2020 08:00 HKT/SGT
Gaining more control over fuel cell membranes
Feb 13, 2020 01:00 HKT/SGT
Using bone's natural electricity to promote regeneration
Feb 11, 2020 16:00 HKT/SGT
Combined data approach could accelerate development of new materials
Feb 6, 2020 13:00 HKT/SGT
Measuring the wear and tear of metals
More news >>
Copyright © 2020 ACN Newswire - Asia Corporate News Network
Home | About us | Services | Partners | Events | Login | Contact us | Cookies Policy | Privacy Policy | Disclaimer | Terms of Use | RSS
US: +1 800 291 0906 | Beijing: +86 400 879 3881 | Hong Kong: +852 8192 4922 | Singapore: +65 6653 1210 | Tokyo: +81 3 6859 8575