|
|
|
|
|
| Researchers at Jilin University, China, reviewed recent progress in the study of Salvinia leaves and their artificial replicas. |
CHANGCHUN, CHINA, Sept 16, 2021 - (ACN Newswire) - Several plants and animals have evolved surfaces with long-term (i.e., days to months) air-retainability to prevent wetting and submersion. One example is Salvinia, a plant floating on water. The secret "how do they maintain an air-mattress" has been unraveled by researchers.
 | | Salvinia leaves and the eggbeater structures |
Researchers at Jilin University reviewed recent progress in the study of Salvinia leaves and their artificial replicas. "Salvinia has complex multicellular hairs on the upper side of its leaves, and each group of four hairs is connected at the terminal ends, forming an eggbeater structure. The hairs are coated with hydrophobic wax crystals, while the patches at the terminal ends of the hairs lack wax crystals and are, therefore, hydrophilic. These features make the air-water interface more stable, exhibiting long-term air-retention ability," says author Huichao Jin of Jilin University in Changchun, China.
Since the air-retention ability of Salvinia leaves was discovered, researchers began to fabricate artificial Salvinia leaves and investigated their potential applications. However, the complex eggbeater structures present a difficult challenge for traditional manufacturing methods. In the past decade, photolithography, direct laser lithography, chemical vapor deposition, electrodeposition, electrostatic flocking, 3D printing, chemical etching, and plasma etching recently have been developed for fabricating Salvinia-inspired structures. However, the complex structures make many of these techniques unable to replicate the fine structures. Although direct laser lithography and 3D printing techniques succeed in fabricating fine structures, they cannot fabricate the hydrophilic tips at the end of hairs. Therefore, it is still challenging to fabricate artificial Salvinia leaves.
The robust air-mattress in Salvinia structures acts as a physical barrier for water to reach the substrate. This inspires many engineering applications, including drag reduction, water harvesting, evaporation, and repellence, oil/water separation, and thermal insulation. These works are currently limited to early laboratory demonstrations. There are still challenges in the development of artificial surfaces suitable for the complexity and variability of the real environment.
Jin and his colleagues are exploring the potential of Salvinia structures in preventing medical bacterial infection. "The air-mattress acts as a physical barrier for water to approach the substrate, and it can also act as a physical barrier for preventing bacteria reach substrates," says Jin. He points that traditional antibacterial surfaces involving antibiotics may cause drug resistance while the artificial Salvinia-inspired surfaces are free of antibiotics. Employing Salvinia structures to prevent medical bacterial infection may be a promising strategy.
Article details: Jin et al., "Small structure, large effect: Functional surfaces inspired by Salvinia leaves" Small Structures (2021) https://doi.org/10.1002/sstr.202100079
Contact: Dr. Huichao Jin Jilin University Email: jinhc@jlu.edu.cn
Press release distributed by Asia Research News for Jilin University.
Topic: Press release summary
Source: Jilin University
Sectors: Materials & Nanotech
https://www.acnnewswire.com
From the Asia Corporate News Network
Copyright © 2025 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
|
|
|
|
|
|
|
| |
Latest Press Releases
HKTDC 4Q25 Export Confidence Index: 2026 Hong Kong Export Growth of 8-9%, Sustained AI product demand lays solid foundation for future expansion
Friday, December 12, 2025 10:15:00 PM
|
|
|
Everest Medicines Announces Commercialization Service Agreement and License Agreement with Hasten
Dec 12, 2025 14:35 HKT/SGT
|
|
|
Anime Tokyo Station: A Series of Linked Events to Be Held in Conjunction with the Anniversary Joint Exhibition
Friday, December 12, 2025 10:00:00 AM
|
|
|
CMS (867/8A8): NDA of Innovative Drug Y-3 for Injection for Acute Ischemic Stroke Accepted in China
Dec 11, 2025 20:00 HKT/SGT
|
|
|
Focus Graphite Achieves 99.9996 wt.% Ultra-High Purity and 2.03 ppm EBC in Follow-On Testing
Dec 11, 2025 18:09 HKT/SGT
|
|
|
Nasdaq Verafin Joins Global Anti-Scam Alliance
Dec 11, 2025 14:21 HKT/SGT
|
|
|
Dr. Teck Lim Chia, Chairman and CEO of CBL International, Honored at the Prestigious Directors of the Year Awards
Dec 11, 2025 12:54 HKT/SGT
|
|
|
Cloudbreak Pharma Soars 80%+ on Multiple Catalysts, Driving Value Re-Rating
Dec 11, 2025 08:20 HKT/SGT
|
|
|
Indonesian Government's Swift Response in Recovering Flood-hit Sumatra
Dec 10, 2025 23:30 HKT/SGT
|
|
|
TIS Helps Treasury Teams Navigate the Ongoing ISO 20022 Transition After the 2025 Banking Deadline
Dec 10, 2025 21:00 HKT/SGT
|
|
|
|
|
More Press release >> |
|
|
|